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The one-dimensional, time-dependent, multicomponent premixed laminar flame is 
solved via a highly accurate method of lines approach. The neglect of pressure variations 
and viscous dissipation and the use of a Lagrangian spatial coordinate reduce the problem 
to a system of parabolic partial differential equations for the species concentrations and 
the temperature. Introducing an appropriate B-spline (finite element) basis for the spatial 
variation and imposing collocation and boundary conditions on the time-dependent 
coefficients produce a stiff ordinary initial value problem which can be solved by standard 
techniques. Physical results of special interest include the transient and steady-state profiles 
of fluid velocity, temperature, and species concentrations through the reaction zone and 
the upstream velocity (flame speed) of the combustible mixture required to asymptotically 
stabilize the flame. The analysis is illustrated for the case of an ozone decomposition flame 
and a comparison with other theoretical predictions shows that the use of less accurate 
methods can result in significant errors in the predicted values of minor species profiles and 
the flame speed. 

1. INTRODUCTION 

Theoretical investigations of premixed laminar flames have essentially followed two 
different approaches. One formulation, first adopted by Hirschfelder et al. [l], seeks 
a solution to the time-independent equations and, for one-dimensional geometry, 
results in a two-point boundary value problem. It is also an eigenvalue problem due 
to the fact that the upstream fluid velocity (flame speed) required to stabilize the 
flame is an unknown quantity. Williams [2] summarizes various solution techniques 
for simple steady flames and Wilde [3] describes a general iterative technique based on 
a quasi-linearization method. 

The second approach, first described by Spalding [4], treats the full time-dependent 
equations but does not require that the flame speed be known a priori. This description 
appears to be mathematically more straight-forward than the steady-state approach. 
Solution methods for general chemical-kinetic schemes have thus far been based on a 
discretization of the spatial coordinate using finite difference approximations (cf. 
Spalding et al. [5] and Bledjian [6]). The present work describes an alternative method 
of lines technique involving collocation with B-splines which is capable of providing 
highly accurate approximate solutions to the time-dependent equations. This high 
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PREMIXED LAMINAR FLAME 411 

order accuracy is desirable in order to provide reliable tests of proposed chemical 
reaction mechanisms and uncertain rate constants. A comparison of the results 
obtained here with other published results illustrates the errors which can occur when 
lower order methods are used. 

2. GOVERNING EQUATIONS 

The physical problem is illustrated in Fig. 1. A premixed combustible fluid mixture 
emerges from a flat flame burner, passes through a reaction zone in which chemical 
changes take place, and emerges in a burned state. The relevant variables of interest 
here are the mass fractions Yfk), k = l,..., iV, temperature T, density p, and velocity u 

BURNED MIXTURE 

T 0' PO k=l,...,N 

/ 
L 

I Premixed Combustible 

Mixture (Unburned) 

FIG. 1. A premixed laminar flat flame. 

of the fluid. The goal is to be able to theoretically predict these quantities as functions 
of space and time. To simplify the model, the flow is assumed to be one-dimensional, 
the presence of the flame holder is ignored, and forced convection effects are assumed 
to dominate any natural convection effects due to gravity (i.e., the body force is 
neglected). The conservation equations describing the model are then overall con- 
tinuity 

conservation of momentum 

(2.1) 

(2.2) 
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conservation of species 

a Y(k) p,-+puqpR,M,+-g-(pD,%), 

k = l,..., N = no. of species, 

and conservation of energy 

- 5 R,M,h’k’ + ; @,C$) F -$. 
k=l k=l 

(2.3) 

(2.4) 

In these equations, a Fick’s law is assumed to govern the diffusion of each species and 
the effects of radiative heat transfer and thermal and pressure diffusion have been 
neglected. The variables appearing in these equations have their usual meanings and 

TABLE I 

Definitions of Variables 

Symbol Definition 

X Space coordinate 
t Time coordinate 

P Density of fluid mixture 

P W) Density of kth species 
y(k) Mass fraction of kth species ( =pfk’/p) 
2.4 Velocity of fluid mixture 
R Universal gas constant 

P Hydrostatic pressure 

P First (shear) viscosity coefficient 
K Second (bulk) viscosity coefficient 

Rk Rate of production of kth species by chemical reactions (moles/vol-set) 

Mk Molecular weight of kth species 

4 Binary diffusion coefficient for the kth species into the mixture of remaining species 

CD Specific heat capacity at constant pressure of the fluid mixture 
&=) 

T” 
Specific heat capacity at constant pressure of the kth species 
Temperature of the fluid 

A 
hf’ 
h’k’ 

Thermal conductivity of the fluid mixture 
Standard molal enthalpy of formation of kth species at temperature To 
Specific enthalpy of kth species [=M;‘hfj + j’r, @(?‘) d?‘j 
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are summarized in Table I. The system of Eqs. (2.1)-(2.4) is closed by adding the 
equation of state (assumed to be that of an ideal gas) 

p=p ~$hw. 
k=l k 

(2.5) 

In order to simplify these equations, the effects of viscosity are assumed to be 
negligible and fluid velocities are assumed to be small compared to the speed of sound. 
This last approximation, valid for weak deflagrations (cf. Williams [2]), allows one 
to integrate Eq. (2.2) and obtain the condition - 

p w p. = const. (2.6) 

The simplified set of equations is then 

i?Y(k) av 
at+" ax -=$,&+;+d&~), 

(2.7) 

k=l ,..,, N, (2.8) 

(2.9) 

(2.10) 

The solution of Eqs. (2.7)-(2.10) is greatly facilitated by introducing a Lagrangian 
coordinate Z/J (cf. Spalding [4]), 

Since 

$(x, t) = i= p(Z, t) dx. (2.11) 

(pu) d% = -pu + m&>, (2.13) 

where 

(2.14) 
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the continuity equation (2.7) is identically satisfied when # and t are used as indepen- 
dent variables. Using the relations 

(2.16) 

the remaining equations become 

=) +$R,M,, 
a+ 

k = l,..., N, (2.17) 

- & il &WNk: 

N CF’ ay(k) a7- ___ 
+ &ypzDk a# a* ' (2.18) 

where p, Rk , and hk are specified functions of the dependent variables T, Y(l),..., YcN). 
In practice, the variable YtN) is usually eliminated by use of the relation 

k=l 
(2.19) 

In order to completely determine the solution to the parabolic system of equations 
(2.17) and (2.18), one must specify initial and boundary conditions. These are most 
easily applied in a frame of reference in which the fluid is initially at rest. If the initial 
conditions are symmetric about x = 0, only the half line 0 < x < co need be consi- 
dered and the boundary conditions are 

ar ay(l) a Y(N) -zz __ = . . . - _I - 
a+ a+ a* O 

at * = 0, 00 for t > 0. (2.20) 

[Equation (2.11) is a strictly monotonic mapping from 0 < x -C co onto 0 < Z/ < co.] 
These conditions correspond to zero flux of species and heat at the origin (due to 
symmetry) and at infinity. One also has that u(x = 0, t) = 0 for all t so that the terms 
containing m, in Eqs. (2.17) and (2.18) vanish. The initial conditions (in the 16 coor- 
dinate) are 

T(tb, t = 0) = T,($J), (2.21) 

Y’“‘($b, t = 0) = Yo’k’($h), k = I,..., N, (2.22) 
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Once Eqs, (2.17)-(2.22) have been solved for T, p, Y(l),..., YcN) as functions of $ 
and t, Eq. (2.12) can be integrated to give 

x<h t> = job ---& 4k (2.23) 
3 

which in turn can be used to obtain T, p, Y(l),..., Y(“‘) as implicit functions of x and t. 
The fluid velocity, from Eqs. (2.11) and (2.13) is then 

1 u(x, t) = - __ s ’ ap(x, t> & 0 at’ (2.24) 

3. METHOD OF SOLUTION 

It is convenient to Iirst nondimensionalize Eqs. (2.17) and (2.18). Hence, the 
following nondimensional variables are introduced: 

p* = P/Pm 9 T* = T/T, ; (3.la, b) 

D*s = DL/D, , A” Es h/h, ; (3.2a, b) 

c*, = C&P,, (k)* _ (k) 
c, = CP ICP m (3.3a, b) 

h* = hlc,,T, , it!f*k = M,/b!f, ; (3.4a, b) 

t* E t/tm ) R*l, = R,M,t,/p, ; (3.5a, b) 

x* = xpm ) L = GLntmlpmCpm)l~P; (3.6) 

4* = lClllCIm, #rn = p,Lc = (pm~mtmlCgm)1’2. (3.7) 

Here, pm , Tco , Da , L , cpm, and A4, represent characteristic values of density, 
temperature, mass diffusivity, heat conductivity, specific heat capacity, and molecular 
weight, respectively. The characteristic time t, is based on a “significant” chemical 
time scale (there are in general a number of such scales due to the fact that there is 
wide variation among the rates at which the different chemical reactions occur; the 
differential equations are therefore “stil??‘). The characteristic length I, is a diffusion 
length scale based on t, (there is no natural length scale in the problem). Substituting 
this scaling into Eqs. (2.17) and (2.18) leads to 

g = (&,)-I --f& (P*ZD*~ F) t -$ R*,M*k , k = I ,..., N, (3.8) 

ai- i a 
-( 

aT* 
at* =c*9 a$* p*x* - 

a$* 
- & !l R*,M*kh(‘+ 

N $k)* 

+ (Le,)-l c -$- PIED*, g G, 
k=l 9 

(3.9) 
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where 

Le, = LIP~Lc~, (3.10) 

is a characteristic Lewis number. 
The method of lines technique adopted here is based on a collocation procedure 

(cf. [7]). It is assumed that the solution can be written in the form 

y(l) 

y(z) I1 Yb’ 

T* 

m N - c 
i=l 

(3.11) 

where the collection of functions Fi($*), i = l,..., m, span the solution space for any 
fixed t* to within a small error tolerance Ed . It is also assumed that the truncation 
error, the amount by which the approximate solution (3.11) fails to solve the partial 
differential equations (3.8) and (3.9), is at most a small value Ed . The time-dependent 
coefficients Cf’, P 2 ,*--, Cj& , i = I,..., m, are uniquely determined by requiring that 
Equation (3.11) satisfy the two boundary conditions in Eq. (2.20) and that it satisfy 
Eqs. (3.8) and (3.9) exactly at m - 2 interior (collocation) points #*1 , $*2 ,.,., $f-, . 
This results in a system of coupled nonlinear ordinary differential equations for these 
coefficients which may be numerically integrated by standard techniques. The initial 
values for the coefficients are obtained by requiring Eq. (3.11) to satisfy the initial 
conditions in Eqs.(2.21) and (2.22) at m (interpolation) points (including the two 
boundary points). 

The particular functions Fi(~*) used in this paper belong to a special class of 
piecewise polynomials called B-splines. The ith normalized B-spline of order k, 
N&z), is a function of z and defined by a subset of points (=knots){sj}:Z: (cf. Curry 
and Schoenberg [8], de Boor [9]). The B-spline Ni,, (z) is zero outside the interval 
si d z d %+k , non-negative at z = Si and 2 = $+k , and strictly positive for si < z < 
Si+k . This desirable property means that the system of ordinary equations for the 
coefficients (Cf),..., C{il}E1 will not be fully coupled due to the fact that at any 
collocation point, at most k of the B-spline functions are non-zero. In any interval 
such that si < sj < z < &.+I < &+k , Ni,,(z) is a polynomial of order k (degree k - 1). 
If SZ P si < $1 < Si+k 3 is a knot of multiplicity k - v, then dYNi,k/dzY is discontinuous 
at z = sL and all lower order derivatives are continuous at z = s1 . For the special 
case of equally spaced knots sj = si + (j - 1) h, j = l,..., k + 1, h > 0, Ni,k(Z) is a 
bell-shaped function symmetric about z = si + $kh. 

The motivation for generating B-splines is contained in the B-spline representation 
theorem of Curry and Schoenberg [8]. Consider the linear space of functions gk,E,,, , 
X = {&]:‘:, v = {vi}ESi2 , consisting of the set of all piecewise functions f(z) which are 
polynomials of order k in each interval & < z < &+1 , j = l,..., 2, and which obey 
the continuity conditions 
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&-Ij- &'f 
w --pi = 0, j = I,..., vi ; i = 2,. .., 1. (3.12) 

z-ci+ z-r; 

The dimension of the space B,,,,, is m, 

m = kl - C vi 
is2 

(3.13) 

(de Boor [IO]) and the theorem specifies the construction of a knot sequence {&}E:” 
such that the sequence {NC,,},“=, of B-splines of order k is a basis for 9,,,,, on the 
interval [So , sm+J. As a consequence of this theorem, one has the approximation 
property (Swartz and Varga [II]) that for a general (breakpoint) sequence 5 and a 
sufficiently smooth function w(z), 

where the old’s are constants and 

h = my (fi+l - 0 (3.15) 

Thus, the tolerance Ed and the truncation error e2 of the preceding section are O(P) 
and O(hk-2), respectively. 

4. EXAMPLE: OZONE DECOMPOSITION 

The applicability of the above analysis was demonstrated by calculating the structure 
of an ozone decomposition flame. In order to compare the results with other 
theoretical predictions, the following nonessential approximations were made in the 
fluid conservation equations (cf. Bledjian [6]): 

D1 = D, = *.*=D,.~Dandp~D=const=p,~D,, (4.1) 

ph = const = p,h, , 

(1) (2) (N) == c, = c, zzz ... = c, - cv = const = 

The ozone decomposition mechanism is 

0 + 0, s 202, 
kab 

(4.2) 

cl&. (4.3) 

(4.4) 

(4.5) 

(4.6) 



418 STEPHEN B. MARGOLIS 

where x represents any of the three species 0, 0, , 0, (hence there are seven reversible 
reactions which can occur). 

The rate of production R, of the kth species appearing in Eqs. (2.17) and (2.18) is 
given by the law of mass action 

where v’ le,nz(~i,m) is the stoichiometric coefficient of species k, k = I,..., N, appearing 
as a reactant (product) in the reversible reaction m, m = I,..., M. The variable c, is the 
mole concentration of species n and is related to the mass fraction Y(“) by 

c, = (p/M,) Y(“). (4.8) 

The function k,f(k,“) is the so-called specific rate constant for the forward (back- 
ward) mode of reaction m and is usually given by the semi-empirical Arrhenius 
expression 

k 
n 

f = B 
m 

fp,fe-E,fIRT 
9 B f s f Emf = const, m, m, (4.9) 

with a similar expression for k ,b. The constant Emf(Emb) is the activation energy of the 
forward (backward) mode of reaction m. 

Utilizing Eqs. (4.1)-(4.3) and (4.7)-(4.9), the nondimensionalized equations (3.8) 
and (3.9) become 

aT* av aY(z) a Y(3) 
aSL*=aJI*=qT=~=o at $* = 0, cc for t* 3 0. (4.12) 

The variables Y(l), Y@), Yf3) here denote the mass fractions of 0, 0,) and O3 , respec- 
tively. The nondimensional production terms Q and P(k), k = I, 2, 3, are 

M=7 

P(~) = 1 it&*(~;,~ - v;,,,) 
[ 
(kmf)* p*@ 

VL=l 

_ (kmb)* p*B"-l (4.13) 
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and 

M-7 
Q = - 1 hi”)* (kmf)* p@mpl 

W&=1 

yf j g 1”‘” 

n=1 

(4.14) 

where 

(kmf)* 3 k,ft, (*)^“-‘, 

(kmb)* = kmbt, (-$$+‘. 

The number 

(4.17) 

(4.18) 

is the nondimensional enthalpy of reaction for the mth reaction (hk” is the molal 
enthalpy of formation of the kth species). The thermodynamics and kinetics data used 
were the same as those used by Bledjian [6] and Hirschfelder et al. [1] and are given 
in Table II. The characteristic time t, was chosen on the basis of the forward reaction 
(4.4) since this is the reaction which must occur (for the case of a combustible mixture 
of 0, and 0,) before a flame can develop and propagate. Specifically, t, was taken to 
be that value which made (k,f)* in Eq. (4.16) equal to unity for T* = 2.5. 

The initial conditions on the mass fractions and temperature were taken to be 

0 < +* G 1.2, (4.19) 

+ + (Q - 0.0005) yF)(#*) = Ii, lG* > 1.2, cos5[(~/2)(~*/1~2)71~ O G ** G l-2> (4.20) 

yp(#*) = 1 - y?' - yo(2) 

zzz 

I 

B -  * ~~~"~~~/~~~~*/~.~>'I, 
3, ** > 1.2, 

0 =G $* < 1.2, (4.21) 

Tll*($*) /*.o, 1.0 + 3.166667 coss[(~/2)(~*/l.2)‘], 0 < = 4* ,< 1.2, 
** > 1.2. 

(4*22) 
These initial conditions correspond to a pocket of burned or nearly burned gas at the 
origin surrounded by a combustible mixture of 75 % 0, and 25 % 0, (by volume) at a 
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TABLE II 

Data for Ozone Decomposition 

Symbol Value Symbol Value 

El’. Et’, 6’ 
E,’ 

Esf, -Sf, Gf 
E?, Eab, E: 

E4” 
Esb, Et?, hb 

Slf, S*f, %f 

d 

%f, hf, &f 

Sib> szb, SQb 

hb 

hb, hb, hb 

Blf, Bzf, B,’ 

B4 f 

hf, Bsf, B,’ 

BI”, Bzb, & 

24140 Cal/mole 
6000 Cal/mole 

117350 Cal/mole 
0 

99210 Cal/mole 
0 

512 
5/2 
512 
7i2 

512 
7/2 

6.76 x 10s 
4.58 x 106 
5.71 x 106 
1.18 x lo2 

& 1.88 x 108 
Bsb, B:, B, 2.47 x lo2 

h”) cl 58675 Cal/mole 
,,‘2’ 0 0 
h’3’ 0 34535 Cal/mole 

Pm 1.201 x 10-3g/cms 
T, 300 “K 

cpm 0.2524 Cal/g-OK 
Am 9.112 x 1O-5 Cal/cm-see-“K 

D* Xm/pmcP Lea 
MC0 16 g/Gale 
1, 4.203 x 1O-8 cm 
tm 5.878 x 1O-5 set 

lm/taJ 71.51 cm/set 
PO 0.821 atm. 
Ml 16 g/mole 
M2 32 g/mole 
MS 48 g/mole 

temperature of 300°K (the pressure was taken to be 0.821 atm.), which is identical to 
the mixture used in [l, 61. The quasi-steady flame structure and propagation velocity 
are independent of the initial profiles near the origin, but it was found that the 
approach to a quasi-steady state was most rapid when their values near #* = 0 were 
approximately those of the burned mixture. In the actual integration of the equations 
by the method described above, use was made of the subroutine packagePDECOL of 
Madsen and Sincovec [12]. This code, which is applicable to general systems of partial 
differential equations of the form ut = f(x, t, u, u, , uzz), combines the B-spline 
subroutines of De Boor [IO] with a state of the art version of a stiff ordinary differential 
equation integrator (Hindmarsh 1131). 

The boundary condition at infinity was applied at #* = 50, a value large enough to 
allow the full development of the flame before any effects could be felt there. Rather 
than use the boundary conditions [Eq. (4.12)] to eliminate some of the time-dependent 
coefficients in Eq. (3.1 l), these conditions were differentiated with respect to t * to 
form additional differential equations for these coefficients: 

at #* = 0, cc for t* >, 0. (4.23) 
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Since initial conditions on the Cji’(t*), i = l,..., m, j = l,..., N + 1 = 4, were 
obtained from interpolation conditions on the dependent variables, a sufficient 
number of breakpoints were used near #* = 0 to insure that initial values of their 
derivatives were nearly zero. 

The maximum breakpoint spacing was 0.2, the order of the B-splines was 6, and the 
continuity conditions at the breakpoints were that the B-splines and their first 4 
derivatives be continuous at the breakpoints. The spatial truncation error was thus 
fourth order and the error tolerance on the time integration of the Cjci’(t*) was chosen 
to be sufficiently small so that no larger errors were generated by the ordinary differen- 
tial equation integrator. A total of 270 breakpoints were used, resulting in m - 2 = 
272 collocation points for a system of three partial differential equations [the relation 
(2.19) was used to eliminate one of the mass fraction variables]. Including the 
boundary equations (4.23), the use of (3.11) and (2.19) in (4.10) gave a total of 3m = 
822 coupled ordinary differential equations. 

5. DISCUSSION OF RESULTS 

The time development for Le, = 1 of the right propagating flame (the profiles are 
symmetric with respect to the origin) from the initial conditions [Eqs. (4.19)-(4.22)] 
is shown in the Lagrangian coordinate #* in Figs. 2a-h. Figures 3a-h show the 
development in the physical coordinate x *. These pictures, taken in sequence, illustrate 
the early diffusion of heat and individual species, the ignition process, and the final 
approach to a steadily propagating flame front. In these figures, one unit in time is 
t, = 5.878 x 1O-5 set, one unit in the Lagrangian coordinate is p,l, = 5.048 x 

1O-6 g/cm2, and one unit in the physical coordinate is Z, = 4.203 x 1O-3 cm. The 
picture at t* = 35, obtained after about 20 minutes of CDC 6600 computer time, is 
the quasi-steady profile of a fully developed ozone flame. 

A comparison of these results with those of Bledjian [6], who used a lower order 
finite difference method, shows a significant difference in the profile of Y(l) (atomic 
oxygen). In particular, the results here support those of Hirschfelder et al. [I], who 
also obtained a sharp gradient of Y(i) (with respect to temperature) at the hot boundary 
using a time-independent approach. This result is not surprising in view of the multiple 
time scales, for a consideration of the rates at which each of the reactions [Eqs. (4.4)- 
(4.6)] occurs shows that the flame structure and propagation velocity is dominated by 
the decay of 0, into 0, and 0 and the recombination of 0 with 0, to form 0,. Due 
primarily to the small concentrations of 0, the recombination of 0 with itself to form 
0, only becomes significant (compared to the other reactions) after the mixture is 
nearly burned and is thus responsible for the relatively slow decay (in time) of the 
mass fraction of 0 from its maximum value of approximately 4.51 x 1O-3 just behind 
the flame. 

A plot of the fluid velocity (made dimensionless by lm/tm = 71.51 cmjsec) for a 
fully developed flame, obtained from an accurate numerical approximation to the 

581/27/3-g 
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integral in Eq. (2.24), is shown in Fig. 4. At this stage, the velocity at infinity has 
essentially reached its constant value given by 

- 184.6 cm/set. - (S.1) 

The speed of propagation of the flame relative to the fluid at rest at the origin, u~,~ , 
was calculated (by measuring the distance travelled by the steady profile per unit 
time) to be 234.3 cm/set, regardless of which profile was used to determine this 

FIG. 4. Velocity profile through the quasi-steady ozone decomposition flame. 

quantity. The flame speed uf , the propagation velocity relative to the fluid at infinity, 
is thus 

Uf = Uf.0 - u, = 49.7 cm/set, (5.2) 

as compared to Bledjian’s value of about 54 cm/set. Bledjian, however, reported 
variations in this value depending on which species was used to determine u~,~ and 
hence was unable to truly obtain (in the limit t* -+ co) a flame which propagates 
without change in shape or velocity. Since this would imply that the steady-state 
eigenvalue problem referred to in Section 1 has no solution, the conclusion here is that 
high order methods such as the one demonstrated in this paper are essential to the 
theoretical prediction of time-dependent laminar flames. 
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